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Abstract

The long-wave instability in the problem of thermocapillary convection in a horizontal layer with a free deformable boundary
and a solid bottom is investigated. The transcendental equation for the main asymptotic term of the spectral parameter is written
in explicit form. The main attention is paid to investigating oscillatory instability. For the frequency of neutral oscillations, simple
transcendental equations are obtained that contain the Prandtl and Biot numbers. In a number of cases, exact solutions are indicated.
Explicit formulae are given for the main asymptotic term of the Marangoni number. In the case of a non-heat-conducting solid wall,
the relation between the critical values of the parameters for inverse Prandtl numbers is found. It is shown that, for different Prandtl
numbers, the asymptotic values are in good agreement with the numerical values.
© 2007 Elsevier Ltd. All rights reserved.

In an investigation of thermocapillary convection in a plane horizontal liquid layer it was established1 that the
deformability of the free boundary may be the reason for instability under long-wave perturbations. Monotonic
Marangoni instability was studied in Refs 2–5. Oscillatory instability was found numerically for the first time in
Ref. 6, where calculations showed that it occurs only for negative Marangoni numbers, i.e. during heating of the
layer from above. The thermocapillary instability in a semi-infinite layer was investigated in Ref. 7. The effect
of high-frequency vibration on long-wave monotonic instability was examined in Ref. 8. A review of research on
thermocapillary convection can be found in Ref. 9.

In the present paper the long-wave asymptotic forms of thermocapillary instability in a horizontal liquid layer with
a free boundary and a solid wall, which may either be an isothermal or a non-heat-conducting wall, are investigated.
The form of the asymptotics for the Marangoni number and for the frequency of neutral oscillations was suggested
by the results of calculations8,10 (see also: Shleikel’ A L. The influence of vibration on the onset of convection in a
horizontal liquid layer. Candidate Dissertation, 01.02.05, Rostov-on-Don, 2004).

1. Fundamental equations

In the study of the thermocapillary convection of a homogeneous liquid in a horizontal layer with a free deformable
surface and a solid bottom, assuming that surface tension forces with a coefficient � = �0 − �T(T − T0) are acting on
the free surface, for dimensionless amplitudes of normal perturbations of the vertical component of velocity υ(z),
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temperature �(z) and an elevation of the free boundary �, the following spectral problem arises3,6,8

(1.1)

Here � is the wavenumber and � = �r + ic is the spectral parameter: if, for all eigenvalues �r < 0, stability occurs, and
if at least value of � exists, for which �r > 0, then instability occurs; loss of stability corresponds to the case where
�r = 0: monotonic loss occurs if c = 0, and vibrational loss if c �= 0; the z axis is directed downwards perpendicular to
the layer, D = d/dz. The dimensionless parameters are given by the formulae

(1.2)

where Pr, Ma and Bo are the Prandtl, Marangoni and Bond numbers, and Cr is the capillary parameter. Furthermore,
problem (1.1) contains heat transfer parameters – the Biot numbers Bi and B. The dimensionless parameters (1.2)
contain physical characteristics: the coefficient of kinematic viscosity �, the thermal diffusivity �, the density 	0 at a
fixed temperature T0, the average thickness of the layer h, the equilibrium temperature gradient A and the acceleration
due to gravity g. It is assumed that Cr > 0, and the Bond number can be positive, equal to zero (g = 0) or negative (an
inverted layer). Subsequently, we assume that B = B0/B1, so that when B1 = 0 we have an isothermal solid wall, and
when B0 = 0 we have a non-heat-conducting solid wall.

2. Long-wave asymptotic forms

First we will eliminate the function υ(z) in relations (1.1), and as � → 0 the unknown parameters and the function
�(z) will be sought in the form

(2.1)

For the main terms �0, Ma0, �0(z) and �0 we obtain the problem

(2.2)

(2.3)

Below, we will derive transcendental equations for �0 and formulae for the critical values of Ma0 and the frequency c
in the case where �0 = ic.

First with we will examine the case where Pr �= 1. The solution of Eq. (2.2) will be sought in the form

Substituting �0(z)into the boundary conditions, we obtain a homogeneous system of linear algebraic equations in the
unknowns �0, A0, . . ., A5. First of all, we will write equations corresponding to the boundary conditions with z = 0.
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We have

From the first two equations of this system we obtain the relations

(2.4)

From the other two equations it follows that A1 = 0, and the following equality holds

(2.5)

From boundary conditions (2.3) we derive a further three equations

(2.6)

From the last equation of system (2.6) and equality (2.5) we obtain

Substituting these expressions into the second equation of system (2.6), we derive a further expression for A4 in terms
of A2

(2.7)

where

(2.8)

Now, from Eq. (2.7) we obtain another expression for the coefficient K:

(2.9)

Further, two problems can be examined. One of these consists of finding, for fixed values of the parameters Pr,
Ma0, Bi, B1 and B0, the unknown complex parameter �0 from the transcendental equation obtained by making the
expressions for K, according to the second formula of system (2.4), equal to expression (2.9). Another problem consists
of investigating the oscillatory instability, for which it is necessary to assume that �0 = ic and to find c and the critical
values of Ma0. This problem will be examined below. The transcendental equation Im K1 = 0 for the frequency c is
obtained from the condition for the coefficient K to be real, which follows from the second formula of system (2.4).
Solving this equation, we find c, then the parameter K = K1, and finally we obtain

(2.10)

As can be seen, the main terms of the asymptotic form depend only on the Prandtl and Biot numbers.
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3. The case of a zero biot number

Below, we will assume that Bi = 0, and we will confine ourselves to considering a non-heat-conducting (B1 = 1,
B0 = 0) or isothermal (B1 = 0, B0 = 1) solid wall.

In the first case, the equation Im K1 = 0 takes the form

(3.1)

In the second case

(3.2)

We will introduce the notation P = √
Pr and c = x2/2. Then, p1 = Px(1 + i)/2 and p2 = x(1 ± i)/2.

Calculating the imaginary parts, we reduce Eq. (3.1) to the form

(3.3)

For the coefficient K we have the expression

(3.4)

In the second case, for the unknown x, Eq. (3.2) can be written in the form

(3.5)

In this case

(3.6)

Eqs. (3.3) and (3.5) turned out to be fairly simple to solve numerically. In some cases they can be investigated analytically
and precise solutions can be indicated.

3.1. A non-heat-conducting solid wall

We will use Eq. (3.3). For its roots, the relation

(3.7)

is satisfied. This means that it is sufficient, for example, to find roots when P > 1. Furthermore, from this it follows
that, for low wavenumbers �, the frequency c of neutral oscillations when P < 1 is greater than when P > 1, since

(3.8)

It is not difficult to prove that, if P > 1 is an integer, then Eq. (3.3) only has the roots x = n
 (n = 1, 2, . . .). Then
cn = n2
2/2, and for the coefficient K we obtain the expression

(3.9)
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Substituting c and Kn into formula (2.10), we find the corresponding number Ma0. Depending on the eveness parity
of the numbers n and P, we have:when n = 2k + 1

(3.10)

when n = 2k

(3.11)

Assuming n = 1, from formula (3.10) we obtain Ma0.1 = −24 344 when Pr = 100, and Ma0.1 = −3282 when Pr = 25.
We will now consider the case when Pr = Q−2 < 1, so that Pr = Q−1 and Q > 1 is an integer. Then, as was established

above, xn = Qn
 and c = Q2n2
2/2; for the coefficient K we obtain

(3.12)

and for the Marangoni numbers we have:when n = 2k + 1

(3.13)

when n = 2k

(3.14)

For example, assuming n = 1 and Pr = 0.01, from formula (3.13) we obtain Ma0.1 = −2654.

3.2. An isothermal solid wall

We now return to Eq. (3.5). It can be proved that, for uneven values of the parameter P, this equation only has the
roots x = 
, 2
, . . .. For the proof we must put P = 2k + 1 and reduce Eq. (3.5) to the form

Now it is sufficient to show that, for all k = 1, 2, . . ., the function gk(x) < 1 when x ∈ (0,∞), x �= 
, 2
 . . .; we have
omitted the proof in view of its length.

Note that, if P is an even number, then Eq. (3.5) has the roots

If P = Q−1 and Q is an integer, then calculations show that property (3.7) is satisfied, but not for the first root, and
when P < 1 it must be found numerically.

4. The case wither Pr = 1

The solution of Eq. (2.2) has the form

(4.1)
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Satisfying boundary conditions (2.3), we arrive at a transcendental equation for finding the parameter p for fixed Ma0,
Bi, B0 and B1:

(4.2)

If we are interested in the critical values of parameter Ma0, we must put �0 = ic, c > 0. Then the coefficient K will be
pure imaginary. We find it from Eq. (4.2), and from the condition Re K = 0 we obtain an equation for the unknown
p = √

ic. When Bi = 0 we have

The condition Re K = 0 when p = x(1 + i)/2 and B1 = 0 or B0 = 0 leads respectively to the equations

(4.3)

The roots of the first equation x = n
 (n = 1, 2, . . .), and the second equation has a denumerable set of roots, and here
x1 = 3.926 and xn = (
/4 + n
).

In the first case we have

In the second case

Note that, in all the cases considered, the results of calculations8,10 (see also: Shleikel’ A L. The influence of vibration
on the emergence of convection in a horizontal layer of fluid. Candidate Dissertation, 01.02.05, Rostov-on-Don, 2004)
differ from the asymptotic values by no more than 0.5%.

5. The relations between the critical values of parameters with inverse Prandtl numbers

If the solid wall is a non-heat-conducting wall, then the following assertion holds. Suppose, for fixed Pr and Bi
numbers, that the main terms of the asymptotic form are �0 = ic and Ma0; then, for Qr = Pr−1 and B̃i = QrBi, the
corresponding parameters are as follows:

(5.1)

The proof is provided by the fact that, with the replacement indicated, we have the following relation between the
corresponding coefficients K and K̃ (see formulae (2.4) and (2.9))

(5.2)

Then, if Im K = 0, we have Im K̃ = 0. In particular, when Bi = 0, the first formula of system (5.1) was obtained directly
from the equations, while the second formula is verified by substitution.

In conclusion, we note that the asymptotic form given above will be the same under the action of vibration, since, in the
corresponding eigenvalue problem, the vibration terms contain the factor �2.8,10 This is also confirmed by calculations
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(Refs 8,10, etc.). The same asymptotic form occurs in the case of a free non-deforming wall (Zen’kovskaya S Long-
wave oscillatory instability of thermocapillary flows in a horizontal layer. VINITI Dep. No. 1135-V2005, 9.08.2005,
Rostov-on-Don, 2005).
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